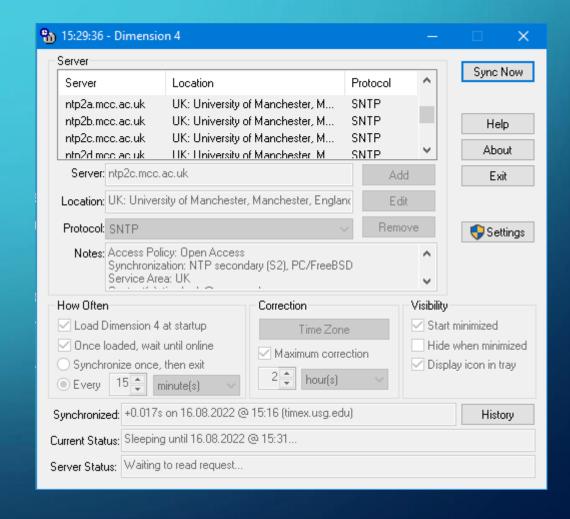


METEOROIDEN

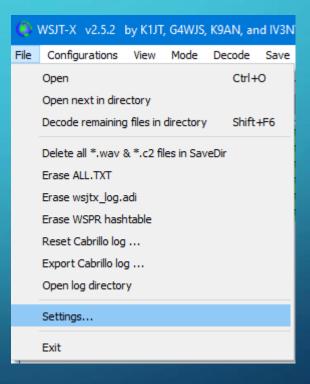
- Kleinkörper im Bereich des Sonnensystems, Größe < 1 mm bis zu mehreren Metern
- Meist Überreste von Kometen, selten Bruchstücke von Asteroiden
- Erzeugen beim Eintritt in die Hochatmosphäre durch lonisation eine Leuchtspur (gemeinhin als "Sternschnuppen" bezeichnet)
- Durch die Ionisation hinterlassen sie in großer Höhe (80 ...
 130 km) eine Zone, die für kurze Zeit (meist < 1 s) in der Lage ist, Funksignale zu reflektieren.
- Diesen Effekt nutzen Funkamateure, um auf dem 6m-, 2mund 70cm große Reichweiten zu erzielen (max. 2000 km).



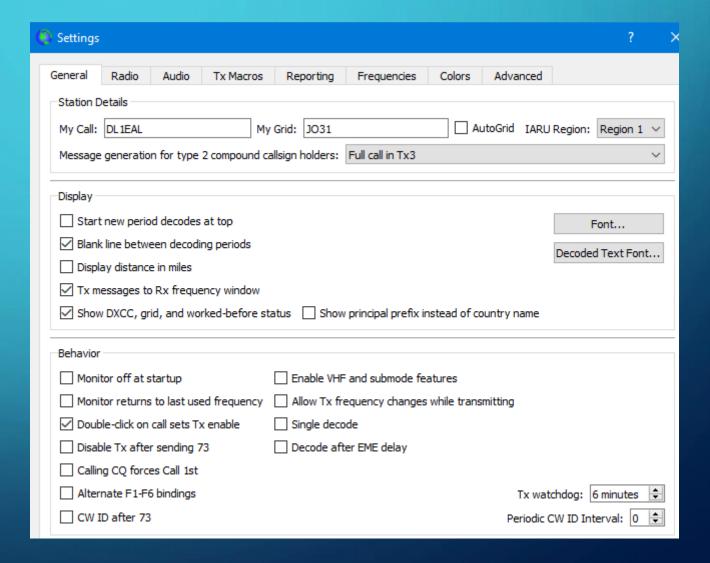
- Eine Betriebsart aus dem Paket WSJT-X (Joe Taylor, K1JT u.a.)
- Entwickelt für Streuverbindungen an Meteor-Leuchtspuren (Meteor Scatter) auf dem 6m-Band (50 MHz) und höheren Frequenzen
- MSK144 verwendet eine spezielle Kodierung zur Fehlerkorrektur. Man empfängt entweder nur korrekte Informationen oder nichts, ganz selten Zeichensalat.
- Die effektive Übertragungsrate beträgt etwa 250 Zeichen pro Sekunde.
- Die Bezeichnung MSK144: Minimum Shift Keying @ 144 bit Packet Length

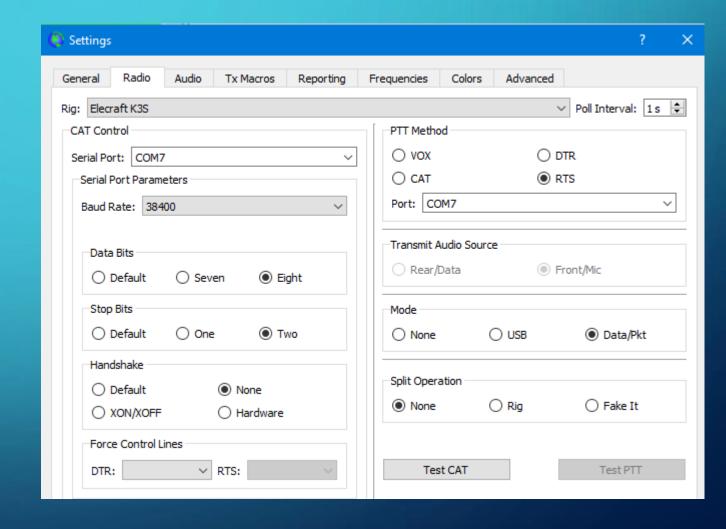
- Minimum Shift Keying mit144 Bit Paketlänge bei 2000 Bit pro Sekunde (Frequenz-Umtastung zwischen 1000 und 2000 Hz)
- Standard MSK144 Nachrichten sind 72 ms lang
- Die 72 ms langen Nachrichten werden lückenlos wiederholt während der Dauer einer Sende-/Empfangsperiode (T/R cycle).
- Für die meisten Zwecke wird eine Sende-/Empfangsperiode von 15 s (auf 2m und 70 cm 30 s) empfohlen, aber 5 s und 10 s Periodendauer werden ebenfalls unterstützt.
- Ein MSK144 Signal belegt die volle Bandbreite eines üblichen SSB Senders, so dass die Audiomittenfrequenz immer auf den Offset 1500 Hz gelegt werden muss.
- Für beste Ergebnisse sollten die RX- und TX- Filter auf den flachsten/ breitesten Frequenzgang eingestellt werden von 300 bis 2700 Hz.
- Der höchste tolerierbare Frequenzoffset zwischen den beiden QSO Partnern beträgt 200 Hz (weniger ist besser).

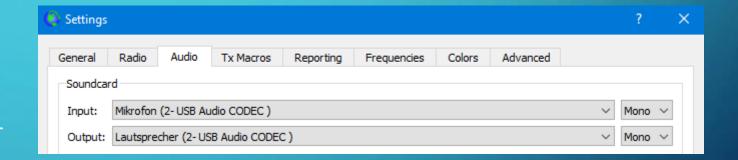
- Wichtige Voraussetzung:
 Die Computeruhr muss auf die Sekunde genau gehen!
- Windows-interne Zeitsynchronisation einmal am Tag reicht nicht aus.
- Hierfür gibt es im Internet kostenlose Tools.
- Z.B. Dimension 4, bei mir erfolgt die Zeitnachstellung alle 15 Minuten
- Download bei
 http://www.thinkman.com/dimension4/

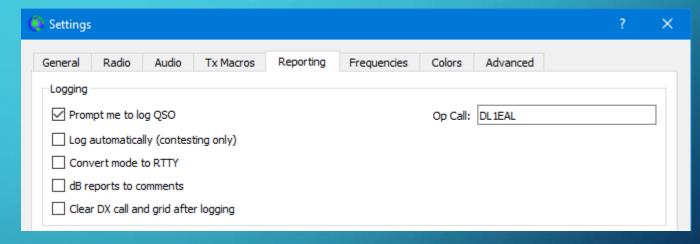


Standardfrequenzen


Band	Frequenz
6m	50,280 MHz
4m (in OE nicht freigegeben)	70,230 MHz
2m	144,360 MHz
70 cm	432,360 MHz

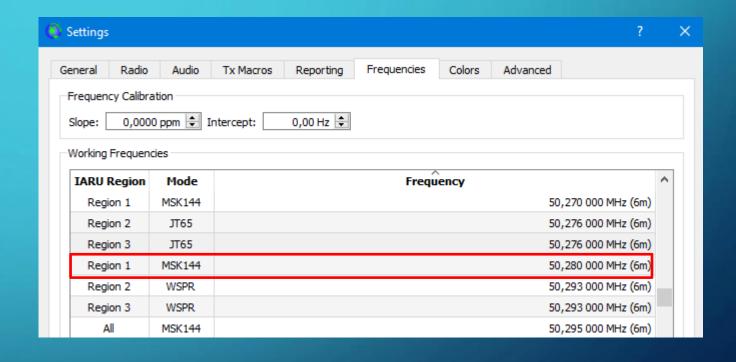

- Wer bereits mit FT8 / FT4 QRV ist, braucht nichts zu ändern
- Ansonsten im Menü 'File' den Punkt 'Settings' anwählen


- Settings -> General
- Eigenes Rufzeichen
- Eigener Grid Locator
- Eigene IARU Region
- Ansonsten Standardeinstellungen beibehalten


- Settings -> Radio
- Funkgerätetyp / Modell
- Schnittstelle für CAT Control und PTT, in Übereinstimmung mit den Einstellungen des TRX
- Betriebsart des TRX für digitale Betriebsarten: Data/Pkt, falls verfügbar, oder USB

- Settings -> Audio
- Input (Audiosignal vom RX)
- Output (Audiosignal zur Modulation des TX)
- Icom IC 7300, Elecraft K3S und viele andere emulieren eine USB – Soundkarte (USB Audio CODEC)
- Externe Interfaces, wie z.B.
 microHAM USB III, Rigblaster u.v.a.
 auch verwendbar (via USB).
- Eigenbau Interface via Soundkarte

- Settings -> Reporting
- 'Prompt me to log QSO' aktivieren
- Öffnet das Log-Fenster nach QSO-Ende
- Log (ADIF-Datei) befindet sich in

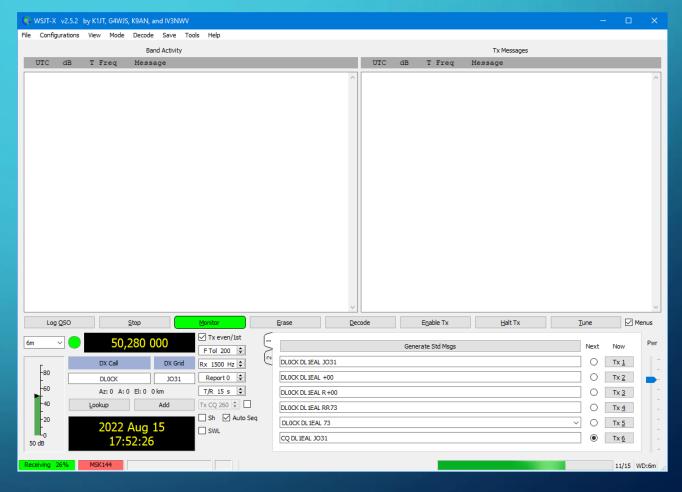

Windows(C:)\Benutzer\<Name>\AppData\Local\WSJT-X

Dateiname: wsjtx_log.adi

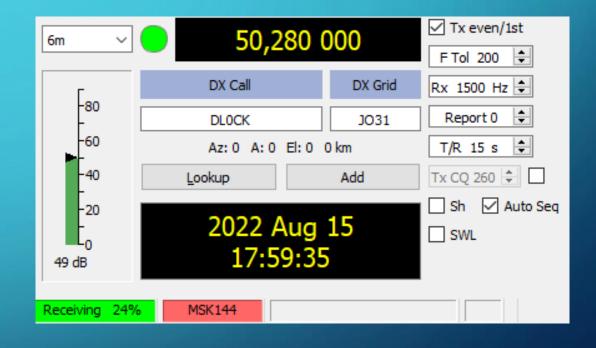
<call:5>OK1NP <gridsquare:4>JN69 <mode:6>MSK144 <rst_sent:3>+08 <rst_rcvd:3>+00
<qso_date:8>20220813 <time_on:6>223300 <qso_date_off:8>20220813 <time_off:6>223645 <band:2>6m
<freq:9>50.281500 <station_callsign:6>DL1EAL <my_gridsquare:4>JO31 <tx_pwr:4>100W
<operator:6>DL1EAL <eor>

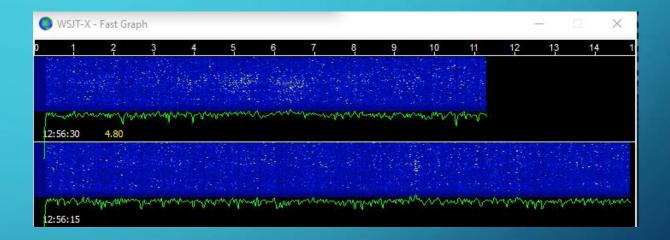
<call:6>SP9HWY <gridsquare:4>JO90 <mode:6>MSK144 <rst_sent:3>+06 <rst_rcvd:3>+03
<qso_date:8>20220813 <time_on:6>224030 <qso_date_off:8>20220813 <time_off:6>224645 <band:2>6m
<freq:9>50.289500 <station_callsign:6>DL1EAL <my_gridsquare:4>JO31 <tx_pwr:4>100W
<operator:6>DL1EAL <eor>

- Settings -> Frequencies
- Mode-abhängige Frequenzen anpassen
- 50,280 000 MHz musste ich z.B. von Hand einfügen
- Rechtsklick in die Tabelle, Insert
- Region, Mode und Frequenz eintragen und 'OK' klicken

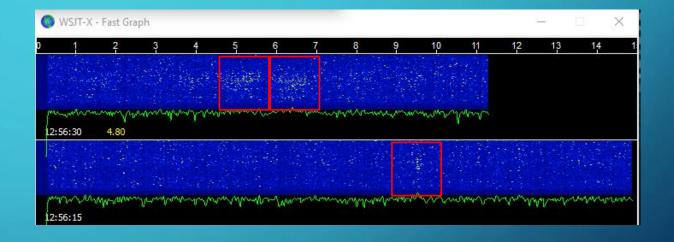

- Mode -> MSK144
- Achtung: MSK144 ist eine Dauerstrich
 Betriebsart
- Netzteil, Transceiver und evtl.
 Endstufe werden heftig beansprucht.
- Evtl. Sendeleistung herunterregeln
- Eine gute Antenne muss her
- Bei mir mit einer 2-El. Moxon auf 6m brauchbare Ergebnisse, 5-EL. Yagi mit Rotor ist besser. Antenne immer auf den QSO-Partner richten.
- Ein QSO nach GM gelang sogar mit angematchtem Langdraht, erforderte aber viel Geduld

2-El. Moxon, Gewinn 6 dBi Boom 0,86 m, Breite 2,16 m

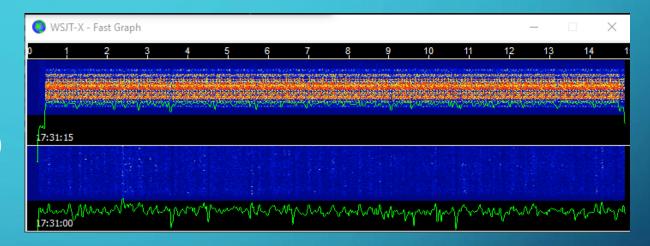

- Hauptfenster
- Linkes Fenster: Band Activity
 (Alle empfangenen und dekodierten Daten)
- Rechtes Fenster: Gesendete Daten und im QSO empfangene Daten
- Unten links: Steuerung
- Unten rechts: Von WSJT-X erzeugte Standard-Sendedaten
- Doppelklick auf Tx 1: QSOs starten mit dem Report (Tx 2) -> ein Zyklus wird eingespart.
- Ganz rechts den Schieber PWR so einstellen, dass nicht übermoduliert wird.



Steuerung

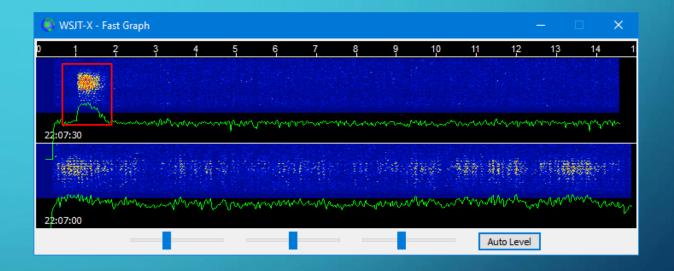

- Im Drop-Down Menü 6m und gewünschte Frequenz anwählen, wird über CAT an den TRX übertragen
- TX odd / 2nd bei eigenen CQ-Rufen
- F Tol Frequenztoleranz 200 ist OK, weniger kann Empfangsverluste bedeuten
- Rx Frequenz 1500 Hz
- T/R 15 s ist Standard, bei schwachen
 Meteorschauern kann 30 s helfen
- Auto Seq aktiviert lassen, manuelle
 Steuerung ist nicht zu empfehlen.
 WSJT-X steuert das QSO automatisch.

- Empfangsbetrieb
- Ein weiteres Fenster zeigt das Empfangssignal abhängig von der Zeit
- Oben in Echtzeit
- Unten eine Periode zuvor (History)
- Grüne Linie: Signalpegel
- Oben, vor blauem Hintergrund:
 "horizontaler Wasserfall", Signal in
 Relation zur Frequenz. Blau = 0
 gelb= schwach, orange = mittel,
 rot = stark



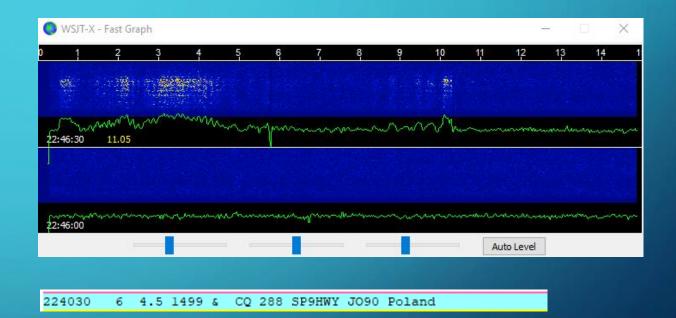
- Empfangsbetrieb
- Einstellung hier: T/R 15 s
- Es ist viel Rauschen zu sehen, aber auch zwei schwache Echos (Pings)
- Unten eine Periode zuvor (History): viel Rauschen und nur ein sehr schwacher Ping
- Lange Echos werden als Burst bezeichnet.

MSK144 BETRIEB


- Empfangsbetrieb
- Lokale Stationen werden so mitgeschrieben
- Das war CQ DH2DAM JO31 mit (+10 dB), 26 km Luftlinie (Schwelm) mit viel Watt und 4-El. Yagi
- Unten wieder die Periode zuvor mit Rauschen
- Tropo-QSOs über kurze Entfernungen (< 500 km) sind verpönt und stören nur.

MSK144 BETRIEB

- Ein QSO
- Ablauf sehr ähnlich zu FT8 / FT4
- Deutlich zu sehen: ein Ping von ca.
 0,5 s Dauer
- Der brachte den CQ-Ruf von SP6CPH auf den Bildschirm
- Mit einem Doppelklick auf die Empfangszeile im linken Fenster startet man das QSO
- Tx enable wird durch den Doppelklick automatisch gesetzt.
- Kurz danach ist die Verbindung im Log



220645	Тx		1500	&	SP6CPH	DL1EAL	+00
220700	4	0.8	1489	&	DL1EAL	SP6CPH	R+04
220715	Тx		1500	&	SP6CPH	DL1EAL	RR73
220730	9	1.1	1481	&	DL1EAL	SP6CPH	73
220730	10	1.3	1479	&	DL1EAL	SP6CPH	73

• Ein QSO kann auch länger dauern • CQ-Ruf von SP9HWY mit Angabe seiner QSY-Frequenz (50,288 MHz) • Ein Doppelklick auf diese Zeile Im Empfangsfenster führt automatisch zum QSY am TRX • Der weitere QSO-Verlauf war etwas langwieriger...

MSK144 BETRIEB

MSK144 BETRIEB

- Ein QSO kann auch länger dauern
- ... aber dieses kam doch zu einem guten Ende
- QSO-Dauer 8 Minuten
- Rig bei SP9HWY:
 TRX: SunSDR2 PRO + EB300 Amp
 300 W und 2x5el. DK7ZB Yagi

224030	6	4.5	1499	&	CQ 288	SP9HWY	J090	Poland
224045	Tx		1500	&	SP9HWY	DL1EAL	+06	
224115	Tx		1500	&	SP9HWY	DL1EAL	+06	
224145	Tx		1500	&	SP9HWY	DL1EAL	+06	
224215	Tx		1500	&	SP9HWY	DL1EAL	+06	
224230	5	11.7	1501	&	DL1EAL	SP9HWY	+03	
224245	Тx		1500	&	SP9HWY	DL1EAL	R+06	
224315	Tx		1500	&	SP9HWY	DL1EAL	R+06	
224345	Тx		1500	&	SP9HWY	DL1EAL	R+06	
224415	Tx		1500	&	SP9HWY	DL1EAL	R+06	
224445	Tx		1500	&	SP9HWY	DL1EAL	R+06	
224515	Tx		1500	&	SP9HWY	DL1EAL	R+06	
224545	Тx		1500	&	SP9HWY	DL1EAL	R+06	
224615	Тx		1500	&	SP9HWY	DL1EAL	R+06	
224630	4	0.8	1497	&	DL1EAL	SP9HWY	RRR	
224630	5	2.2	1493	&	DL1EAL	SP9HWY	RRR	
224630	6	3.2	1496	&	DL1EAL	SP9HWY	RRR	
224645	Tx		1500	&	SP9HWY	DL1EAL	73	
224700	-1	6.7	1493	&	DL1EAL	SP9HWY	RRR	
224700	0	7.0	1493	&	DL1EAL	SP9HWY	RRR	
224715	Тx		1500	&	SP9HWY	DL1EAL	73	
224745	Tx		1500	&	SP9HWY	DL1EAL	73	
224800	2	6.3	1490	&	DL1EAL	SP9HWY	73	
224800	3	10.0	1496	&	DL1EAL	SP9HWY	73	

UTC dB Sek Freq. Text

METEOR-SCATTER WANN?

Meteorschauer 2022/23: Alle Ströme im Überblick

- Meteorströme und ihre jeweiligen Höhepunkte lassen sich vorhersehen. Auf Basis der Berechnungen der International Meteor Organization * werden auf der Nordhalbkugel folgende größere Meteorschauer sichtbar sein:
- Quarantiden: aktiv vom 28. Dezember bis zum 12. Januar, Maximum in der Nacht vom 3. auf den 4. Januar
- Lyriden: aktiv vom 14. bis zum 30. April, Maximum in der Nacht vom 22. auf den 23. April
- Eta-Aquariden: aktiv vom 19. April bis zum 28. Mai, Maximum in der Nacht vom 5. auf den 6. Mai
- Perseiden: aktiv vom 17. Juli bis zum 24. August, Maximum in der Nacht vom 12. auf den 13. August
- Orioniden: aktiv vom 2. Oktober bis zum 7. November, Maximum in der Nacht vom 21. auf den 22. Oktober
- Leoniden: aktiv vom 6. bis zum 30. November, Maximum in der Nacht vom 17. auf den 18. November
- Geminiden: aktiv vom 4. bis zum 17. Dezember, Maximum in der Nacht vom 13. auf den 14. Dezember
- Ursiden: aktiv vom 17. bis zum 26. Dezember, Maximum in der Nacht vom 22. auf den 23. Dezember
- ZHR > 100 Zentithal Hourly Rate

METEOR-SCATTER

Noch Fragen?